3 grudnia na pokładzie rakiety nośnej Falcon 9 zostanie wyniesiony w przestrzeń kosmiczną kolejny już czwarty polski satelita. PW-Sat2 to projekt polskiego sztucznego satelity typu CubeSat 2U, opracowywany i budowany przez członków Studenckiego Koła Astronautycznego przy Politechnice Warszawskiej. Głównym celem misji będzie przetestowanie specjalnie stworzonego żagla, jako taniego i dostępnego dla każdego satelity sposobu deorbitacji, czyli sprowadzenia satelity z orbity w gęste warstwy atmosfery w celu spalenia.
Wizualizacja satelity PW-Sat2 z otwartym żaglem deorbitacyjnym. fot: Marcin Świetlik pw-sat.pl
Specjalnie skonstruowany żagiel deorbitacyjny pozwoli skrócić proces usuwania z orbity satelitów po zakończeniu ich misji z ponad 20 lat do zaledwie kilku miesięcy. Ta innowacyjna metoda może przyczynić się w przyszłości do oczyszczania orbity z kosmicznych śmieci. PW-Sat2 w ramach swojej misji wykona łącznie cztery eksperymenty. Żagiel deorbitacyjny zbudowany został z folii mylarowej o grubości dziesięciokrotnie cieńszej niż ludzki włos. Do ciekawostek należy fakt, że średnica zwiniętego żagla to około 8 cm, co jest niezwykle istotne ze względu na możliwość stosowania tego rozwiązania w mikrosatelitach. Żagiel po otwarciu na orbicie, będzie miał wymiary 2×2 metry.
- Otwarcie żagla spowoduje znaczne zwiększenie powierzchni satelity, a co za tym idzie oporu aerodynamicznego, który na niskiej orbicie okołoziemskiej będzie hamował satelitę. Po przeprowadzeniu pozostałych trzech eksperymentów satelita rozłoży żagiel, co spowoduje stopniowe obniżanie jego orbity, a w konsekwencji spalenie w atmosferze Ziemi – mówi Inna Uwarowa, koordynator projektu
W pełni zintegrowany satelita PW-Sat2. fot: pw-sat.pl
Ramiona żagla deorbitacyjnego zbudowane są ze sprężyn płaskich umieszczonych w mylarowych kieszeniach. Zmagazynowana energia sprężysta pozwala rozwinąć się żaglowi po jego wysunięciu z zasobnika, a kształt sprężyn pozwala zachować sztywność i stabilność nawet w warunkach normalnego ziemskiego ciążenia. Taka konstrukcja pozwoliła na osiągnięcie bardzo małych gabarytów żagla w konfiguracji zwiniętej (w zasobniku). PW-Sat2 ma kształt prostopadłościanu o wymiarach 10x10x22 cm, a żagiel zajmuje mniej niż 25 proc. objętości urządzenia.
Kolejny eksperyment będzie związany z określeniem PW-Sat2 na orbicie, którą umożliwi czujnik Słońca. Czujnik ten może być w przyszłości używany na innych satelitach orientacji przestrzennej. Dzięki temu instrumentowi panele słoneczne satelitów używających taki czujnik będą mogły być optymalnie ustawiane względem źródła światła. Zaprojektowany czujnik jest czujnikiem dwuosiowym i umożliwia wyznaczenie kierunku do Słońca w dwóch płaszczyznach. Elementy światłoczułe, określające natężenie padającego na nie światła, rozmieszczone są na czterech ściankach czujnika. W tym samym czasie promienie słoneczne padają na każdą ze ścianek pod różnym kątem, co pozwala określić kierunek do Słońca. Dane o natężeniu światła z każdej ze ścianek są przekazywane do procesora, gdzie przy użyciu odpowiedniego algorytmu i danych kalibracyjnych przeliczane są na wartości kątowe. Dokładność czujnika zbudowanego dla PW-Sat2 jest szacowana na około 1°. W satelicie zastosowana jest potrójna redundancja czujników światła.
Wizualizacja satelity PW-Sat2 z otwartym żaglem deorbitacyjnym. fot: Marcin Świetlik pw-sat.pl
Na pokładzie satelity umieszczone są także dwie kamery, które zarejestrują proces otwierania się żagla deorbitacyjnego. Dzięki temu możliwe będzie zweryfikowanie poprawnego otwarcia się żagla. Być może PW-Sat2 wykona i prześle zdjęcia Ziemi, niemniej jednak nie jest to priorytetem misji. Użyte kamery używają matrycy CMOS o rozdzielczości 640×480 px.
Czwartym eksperymentem jest mechanizm rozkładania paneli słonecznych zaprojektowany przez studentów. Ogniwa słoneczne są podstawowym źródłem energii dla komputera pokładowego i urządzeń PW-Sata2. Satelita będzie stosował ogniwa zarówno przymocowane na stałe do obudowy urządzenia jak i na rozkładanych panelach słonecznych. Mechanizm rozkładania paneli słonecznych został zaprojektowany tak, aby zajmować minimalną ilość miejsca oraz zgodnie z wymaganiami standardu CubeSat. Mechanizmy takie stosowane są do otwierania paneli, aby zwiększyć efektywną powierzchnię odbierania światła słonecznego, zbieranego przez fotoogniwa.
Podczas poniedziałkowego startu z wyrzutni SLC-4E w Vandenberg znajdującej się na terytorium bazy Sił Powietrznych Stanów Zjednoczonych w Kalifornii - wystrzelona zostanie rakieta nośna Falcon 9, na pokładzie której znajdzie się nie tylko polski satelita PW-Sat2, ale również pakiet satelitów Spaceflight SSO-A/SHERPA SSO.
Szacowany koszt przetestowania i wyniesienia satelity PW-Sat2 w kosmos to 250 tys. euro.
Transmisja na żywo. Start PW-Sat2 - 03.12.2018 około 19:34 czasu polskiego
SpaceX LIVE
Aktualizacja:
19.11.2018
11:33 - Firma SpaceX na Twitterze przekazała informację o przełożeniu zaplanowanego na najbliższy poniedziałek startu rakiety Falcon 9, na pokładzie której zostanie wyniesiony w kosmos PW-Sat2, czwarty polski satelita. Z przekazanych informacji wynika, że start zostaje opóźniony o 3 do 6 dni.
11:35 - Prawdopodobna nowa data startu to 24-25.11.2018 około godziny 19:32 czasu polskiego.
24.11.2018
12:12 - Nowa data startu. 28.11.2018 - 19:32 czasu polskiego.
28.11.2018
10:11 - Nowa data startu. 01.12.2018 - 19:32 czasu polskiego.
29.11.2018
12:19 - Jak informuje firma SpaceX, start rakiety Falcon 9, na pokładzie której zostanie wyniesiony w kosmos PW-Sat2 - czwarty polski satelita, planowany jest w niedzielę, 2 grudnia 2018 r. o godz. 19.32 czasu polskiego.
02.12.2018
10:34 - Firma SpaceX w przekazanym komunikacie poinformowała, że ze względu na konieczność przeprowadzenia dodatkowych inspekcji, start rakiety Falcon 9 nie odbędzie się jak planowano dzisiaj (2.12), a potencjalny nowy termin przeprowadzenia startu to poniedziałek, 3 grudnia, o godzinie 19.32 czasu polskiego.
03.12.2018
19:16 - Start rakiety Falcon 9 ustalono na 19:34 czasu polskiego.
Falcon 9 na wyrzutni SLC-4E Vandenberg przed startem.
19:34 - Start rakiety Falcon 9 przebiegł zgodnie z planem.
fot: SpaceX
19:44 - Lądowanie pierwszego stopnia przebiegło prawidłowo.